Holtec HI-STORM UMAX canister storage systems and all other Holtec thin canister storage systems cannot be inspected, repaired, adequately monitored and are vulnerable to stress corrosion cracking.

  • Canisters with even partial cracks cannot be transported according to NRC Regulation 10 CFR § 71.85.  
  • The Koeberg nuclear plant had a similar component leak in only 17 years.  Koeberg cracks up to 0.61″ deep are thicker than existing Holtec canisters (0.50″). Holtec promises to use 0.625″ canisters at San Onofre. However this has not been approved by the NRC and will only provide a limited amount of additional time for through-wall cracks.

It’s not practical to repair a damaged canister, says Dr. Kris Singh, CEO, Holtec International.

“…It is not practical to repair a canister if it were damaged… if that canister were to develop a leak, let’s be realistic; you have to find it, that crack,  where it might be, and then find the means to repair it. You will have, in the face of millions of curies of radioactivity coming out of canister; we think it’s not a path forward…

A canister that develops a microscopic crack (all it takes is a microscopic crack to get the release), to precisely locate it… And then if you try to repair it (remotely by welding)…the problem with that is you create a rough surface which becomes a new creation site for corrosion down the road.  ASME Sec 3. Class 1 has some very significant requirements for making repairs of Class 1 structures like the canisters, so I, as a pragmatic technical solution, I don’t advocate repairing the canister.”

Instead Dr. Singh states

…you can easily isolate that canister in a cask that keeps it cool and basically you have provided the next confinement boundary, you’re not relying on the canister. So that is the practical way to deal with it and that’s the way we advocate for our clients.

However, there are many problems with Dr. Singh’s solution of putting cracked and leaking canisters inside [transport] casks.

  • There are no NRC approved Holtec specifications that address Dr. Singh’s solution of using the “Russian doll” approach of putting a cracked canister inside a [transport] cask.
  • NRC requirements for transport casks require the interior canister to be intact for transport.  This NRC requirement provides some level of redundancy in case the outer cask fails. Does this mean this leaking canister can never safely be moved?  Who will allow this to be transported through their communities? How stable is the fuel inside a cracked canister?
  • What is the seismic rating of a cracked canister (even if it has not yet cracked all the way through)? The NRC has no seismic rating for a cracked canister, but plans to allow up to a 75% crack (IWB-3640). There is no existing technology that can currently inspect for corrosion or cracks. The NRC is allowing the nuclear industry 5 years to develop it. It is likely to be inadequate due to the requirement the canisters must be inspected while in the concrete overpacks.
  • What is the cost for the transport casks that will be needed for storage?  Will they be on-site? Where is this addressed? Transport casks are intended to be reusable because of their higher cost. How and where will they be stored and secured on-site?
  • How will the leaking canisters be handled by the Department of Energy at the receiving end of the transport?  The DOE currently requires fuel to be retrievable from the canister.

A better solution is to use thick casks that are not susceptible to cracks, that can be inspected and repaired and that have early warning monitoring systems that alert us before radiation leaks into the environment. This is what most of the rest of the world uses. Learn more…

Holtec obtained a license amendment to use the Holtec HI-STORM UMAX system in high seismic areas effective September 8, 2015. However, it’s not approved for any specific site, including San Onofre; that requires additional approvals, and they are only certified safe for 20 years. Any issues that may occur after 20 years are not considered by the NRC, even though they know they must last for decades and they do not have aging issues resolved. See more details below.

Letter To Coastal Commission regarding Holtec UMAX NRC approval, September 18, 2015, outlines the limitations of the approval, including the following items:

  • Not an approval for use at San Onofre. “This rulemaking makes no determination regarding the acceptability of this amended system for use at any specific site.”
  • Certified for only the initial 20 years. Any evaluation for conditions that may occur after this [such as cracking, inspection, aging management, fuel cladding failure from high burnup fuel]  are outside the scope of this approval. “Long-term” [as referenced in the Holtec Safety Evaluation] is a general descriptive term that is not required to support any regulatory or technical evaluation, and thus is not required to be more formally defined.
  • Excludes any plan for storing failed (cracking) canisters. Both San Onofre V.P. Tom Palmisano, and Holtec President, Dr. Kris Singh, state transfer casks can be used to store failed canisters (July 23, 2015 Community Engagement Panel meeting). However the NRC states “The HI-STORM UMAX transfer cask is authorized to transfer intact canisters [e.g., not cracking or otherwise failed canisters].” “Implementing corrective actions in the event of a failed MPC [multi-purpose canister] is the responsibility of the general licensee and those corrective actions are not incorporated into CoC [Certificate of Compliance] No. 1040.”
  • Approved only for 0.5” thick canisters – not the 0.625” thickness San Onofre proposes. “The nominal MPC thickness for the canisters certified under CoC No. 1040, Amendment No. 1 is 0.5”. The NRC has no knowledge of a Holtec proposal to increase the thickness of an MPC to 0.625”. If presented with an amendment request to do so, the NRC will evaluate it in accordance with 10 CFR part 72 requirements.”
  • The underground system evaluated is different than the system proposed for San Onofre.  The approval is for an underground system, not the partially underground system proposed for San Onofre. “Pursuant to the regulatory requirements in 10 CFR 72.212(b), any general licensee that seeks to use this system must determine that the design and construction of the system, structures, and components are bounded by the conditions of the CoC by analyzing the generic parameters provided and analyzed in the FSAR [Final Safety Analysis Report] and SER [Safety Evaluation Report] to ensure that its site specific parameters are enveloped by the cask design bases established in these reports.”

Other problems with the experimental UMAX system

  • The UMAX system does not have drains. Water and other debris can enter through the air vents. The technical specifications state hoses must be inserted in the air vents to remove water and other debris. See diagrams below.
  • The UMAX system is unproven, significantly more costly and unlikely to have costs reimbursed from the Department of Energy, states Entergy VY (Vermont Yankee) in their rejection of the Holtec underground system.

therefore unlikely that the cost of a spent fuel storage system that is significantly more costly than another available alternative can be recovered from DOE. Entergy VY continues to believe that the HI-STORM 100U [UMAX] system not only would be significantly more difficult and substantially more expensive to install than the above-ground HI-STORM 100 system, but also carries significant schedule and cost risks associated with an unproven system.    

Petition of Entergy Vermont Yankee for Second Independent Spent Fuel Storage Installation Supplemental Prefiled Testimony of George Thomas, Vermont Public Service Board, PSB Docket No. 8300, May 11, 2015, page 8

Technical specifications and related information

Holtec International HI-STORM UMAX Canister Storage System, Certificate of Compliance No. 1040, Amendment No. 1 Direct Final Rule, Federal Register Vol. 80, No. 173, pp 53691 – 53694, effective September 8, 2015

Documents SCE Submitted to the Coastal Commission with Application to install Holtec UMAX system

The NRC approved a 20-year general license for the UMAX system April 6, 2015 for lower seismic risk areas

Underground systems are more likely to have overheating problems from wind affects than above ground cask systems. 

Transport of high burnup fuel not approved.

NRC’s Expert Panel Workshop on Degradation of Concrete in Spent Nuclear Fuel Dry Cask Storage Systems, February 24-25, 2015identified numerous concrete aging management problems, particularly with below ground systems (such as the Holtec UMAX dry storage system) due to limited inspection capability, ground moisture and chemical reactions with concrete.  Concrete is not an issue in thick steel or ductile cast iron casks, since they don’t use concrete for gamma and neutron shielding.

U.S. utility companies choose the inferior steel/concrete canister designs due to cost.  National Research Council of the National Academies (2006), Safety and Security of Commercial Spent Nuclear Fuel Storage, National Academies Press, Washington D.C., page 63.

The vendors informed the committee that cost is the chief consideration for their customers when making purchasing decisions. Cost considerations are driving the cask industry away from all-metal [thick] cask designs and toward [steel/]concrete designs for storage.

Experimental UMAX System

The NRC admits the experimental nature of the UMAX cooling system and potential for flooding in their NRC Staff Evaluation of Responses to Requests for Additional Information for the Holtec International HI-STORM UMAX Canister Storage System Certificate of Compliance No. 1040, October 21, 2013 (ML13294A504)  

The staff realizes that the applicant does not have experimental data obtained from a geometry that resembles the HI-STORM UMAX design. Unless the applicant can provide such validation in advance, the staff will issue the CoC at 80% of the total heat load being requested in the application. The staff determined that 20% reduction in the total decay heat will compensate for the uncertainties in the calculations and lack of experimental data to validate the analysis. In cases where data has become available, the staff has found that errors as large as 25% were associated with analytical results. The 20% reduction combined with the available margin in the vendor’s result would provide adequate justification for the thermal design. Once a cask is loaded to 80% of the design basis heat load, the applicant could perform the proposed test to obtain the necessary data which could be used to validate the analysis. At that point the applicant could amend the CoC for higher heat loads. These issues were discussed in an August 28, 2013, conference call with Holtec.

The applicant’s initial response to RAI 6-1, although very detailed, was insufficent to form a safety finding for the HI STORM UMAX storage system due to the potential for water to challenge the integrity of the MPC during a flood event and other credible sources. Additionally, the staff finds that Holtec has not provided acceptable contingency actions to address removing water from the CEC after incursion.

Flooding risk: the Final Safety Analysis Report (FSAR) (ML14202A031) states on PDF Page 47  (I-21):

The essential design and operational features of the HI-STORM UMAX System are:… d. Removal of water from the bottom of the storage cavity can be carried out by the simple expedient use of a flexible hose inserted through the air inlet or outlet passageways.

Gamma shielding: the FSAR states on PDF Page 48  (I-22): Gamma Shielding

In the HI-TRAC transfer cask, the primary gamma shielding is provided by lead. As in the storage overpack, carbon steel supplements the lead gamma shielding of the HI-TRAC transfer cask.

In the MPC, the gamma shielding is provided by its stainless steel enclosure vessel (including a thick lid); and its aluminum based fuel basket and aluminum alloy basket shims.

Japan abolished use of aluminum baskets, but NRC has not addressed this issue.

  • The Japan Society of Mechanical Engineers abolished the aluminum alloy case standards of the metal cask structure standards on October 1, 2015. Summary of Decommissioning and Contaminated Water Management,  December 24, 2015, by
    Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment
  • Holtec and other dry storage vendors also use aluminum baskets. However, the NRC, vendors and Southern California Edison have not addressed this issue.
  • Unlike Japan and most other countries that have standardized on thick wall bolted lid casks, the majority of U.S. canisters are thin-wall and have welded lids.  The only method to inspect the interior of the thin-wall canisters is to destroy these million dollar canisters.
  • The NRC has continued to approved these thin-wall canisters that cannot even be inspected (inside or out), even though they know about the issues with the aluminum baskets.

UMAX Cooling Slide 6, 2015June

Diablo Canyon Holtec HI-STORM 100 above ground thin canister system

HI-STORM100 Regionalized Storage MPC-32-2010

Holtec Technical Bulletin HTB-001 May 2010

 Holtec International Contracts

Holtec HI-STAR 100 storage/transport cask

Holtec HI-STAR 100

Humboldt Bay HI-STAR 100HB casks

HI-STAR 100 Table 1.1-5 FS Cooling Burnup SAR Oct 1999

HI-STAR 100 Cooling Times. SAR Oct 1999

Humboldt Bay uses 5 HI-STAR 100HB casks for their 390 low burnup fuel assemblies, 95 of which are damaged. Each damaged assembly is placed in damaged fuel container [can].

Holtec Quality Issues

  • Holtec Debarment and $12 million “administrative fee”, TVA 2013 Report, page 12
  • In October 2010, TVA debarred Holtec International, Inc., based on the results of a criminal investigation.
  • Criminal investigation by Department of Justice, August 3, 2007, Former TVA-BFN Manager pleads guilty to making false statement in connection with Financial Disclosure Form, Department of Justice, August 3, 2007
    • On or about February 7, 2002, Symonds knew that USTD had been directed to send that $29,212.77 check to Krohn by Holtec International (Holtec) – a company that Symonds knew as of that time (1) had contracted with TVA in November 2001 to design and construct a dry cask storage system for spent nuclear fuel rods at TVA BFN and (2) had contracted with USTB to fabricate some of the construction materials for the TVA BFN dry cask storage system.
    • Additionally, on or about February 27, 2002, during the reporting period for his October 21, 2002 OGE Form 450-A, Symonds co-owned Krohn Enterprises, LLC with his former spouse, and on or about February 27, 2002, Krohn Enterprises, LLC, was paid $25,000 by Check No. 31970 drawn on the Mellon Bank account of USTD. That $25,000 check was deposited into the Krohn Enterprises, LLC, Heritage Bank account, and the proceeds of that check were used to pay the personal expenses of Symonds and his former spouse. On or about February 27, 2002, Symonds knew that USTB had been directed to send that $25,000 check to Krohn by Holtec – a company that Symonds knew as of that time (1) had contracted with TVA in November 2001 to design and construct a dry cask storage system for spent nuclear fuel rods at TVA BFN and (2) had contracted with USTB to fabricate some of the construction materials for theTVA BFN dry cask storage system.
  • U.S. Office of Government Ethics,  DO-08-036: 2007 Conflict of Interest Prosecution Survey, November 6, 2008
    • Case 12. The defendant was employed as a manager at the Tennessee Valley Authority’s Brown’s Ferry Nuclear Plant (TVA-BFN). He was required to complete and submit to TVA a Confidential Financial Disclosure Report, an OGE Form 450. He was required to submit an updated form annually. He was permitted to submit an OGE Form 450-A if there was no change in any of the information he had reported on the prior year’s form.On the form he submitted in November 2000, he answered “none” to the question that asked him to identify for himself and his spouse (1) any asset with a fair market value greater than $1,000 at the close of the reporting period or which produced income over $200 and (2) any non-Federal source of earned income such as salaries and fees over $200 during the reporting period. He certified that his statements were “true, complete, and correct to the best of [his] knowledge.”In October 2001 and October 2002 he submitted the OGE Form 450-A. On both forms he certified that there were no new reportable assets or sources of income for himself or his spouse and that neither he nor his spouse had any new reportable sources of income from non-Federal employment.Despite these certifications, in February 2002, during the reporting period for the October 2002 OGE Form 450-A, he co-owned Company D with his former spouse. Company Z issued 2 checks to Company D, one in the amount of $29,212.77 and the second in the amount of $25,000. The checks were deposited into Company D’s bank account and the proceeds of the checks were used to pay the personal expenses of the defendant and his former spouse. The defendant knew that Company Z had been directed to send the check to Company D by Company E. The defendant knew that Company E had contracted with the TVA in November 2001 to design and construct a dry cask storage system for spent nuclear fuel rods at TVA-BFN and had contracted with Company Z to fabricate some of the construction materials for the TVA-BFN dry cask storage system.The defendant knowingly and willfully failed to disclose on his confidential financial disclosure report that he had received, through Company D, either check.The defendant pleaded guilty to violating 18 U.S.C. § 1001, making a false material statement by executing and submitting an OGE Form 450-A on which he knowingly and willfully failed to disclose his receipt of $54,212.77 through Company D. He was sentenced to 2 years’ probation and a $5,000 fine.The Eastern District of Tennessee handled the prosecution.
  • Office of the Inspector General, Tennessee Valley Authority, Semiannual Report, April 1, 2013 – September 30, 2013, Page 12
    • Debarments – In 2010, TVA and the OIG worked collaboratively to develop a suspension and debarment process for contractors that defraud TVA.  That same year, Holtec International, Inc. (Holtec), a dry cask storage system supplier for TVA nuclear plants, became the first contractor to be debarred in TVA history. Holtec’s debarment lasted sixty days.  Also, Holtec agreed to pay a $2 million administrative fee and submit to a year-long monitoring program for its operations.
  • Office of the Inspector General, Tennessee Valley Authority, Semiannual Report, October 1, 2010 to March 31, 2011 , page 8
    • The OIG initiated a first in TVA history; the debarment of a contractor doing business with TVA. In October 2010, TVA debarred Holtec International, Inc., based on the results of a criminal investigation conducted by the OIG. Because of our recommendation, TVA created a formal suspension and debarment process and proceeded to debar Holtec for 60 days. Holtec agreed to pay a $2 million administrative fee and submit to independent monitoring of its operations for one year. The TVA Board’s Audit, Risk, and Regulation Committee and TVA management fully supported the OIG’s recommendation to create a suspension and debarment process and submit Holtec to that process. TVA’s Supply Chain organization and Office of General Counsel worked collaboratively with the OIG to achieve this milestone in TVA history.
    • How does one contractor being debarred make life better for Valley residents? Ultimately, the less vulnerable TVA is to fraud the better chance rates stay low. This debarment signaled TVA’s commitment to do more than simply ask for the money back. This debarment action was literally heard around the world and drew a line in the sand. Yes, much of this was symbolic, but symbols matter when you are the largest public power company in America.
  • More reports on TVA Holtec disbarment
  • Contractor Misconduct Leads to First TVA Debarment and the Collection of $2 Million Administrative Fee, Page 35
    • The OIG previously reported that a TVA technical contract manager received money from a TVA contractor. Criminal actions were taken against the former TVA technical contract manager in that investigation. In addition, a report of administrative inquiry was issued to TVA management regarding the actions of the contractor, Holtec International, Inc. In response to this report, TVA established and filled the position of a TVA suspension and debarment officer to review the matter, which led to the first debarment action at TVA. Holtec International, Inc., received a sixty-day debarment (October 12 through December 12, 2010); and, by agreement with TVA, will pay a $2 million administrative fee to TVA; appoint a corporate governance officer and an independent monitor (at the contractor’s expense); implement a code of conduct, to include training for all employees, executives, directors, and officers; add three noncompany members to its board of directors and sign an administrative agreement ensuring compliance to the above terms.

Oscar Shirani alleges that all existing Holtec casks, some of which are already loaded with highly radioactive waste, as well as the casks under construction now [2002], still flagrantly violate engineering codes (such as those of the American Society of Mechanical Engineers [ASME] and American National Standards Institute [ANSI]), as well as NRC regulations. He concludes that the Holtec casks are “nothing but garbage cans” if they are not made in accordance with government specifications.

Although NRC has dismissed Shirani’s concerns, NRC Region III (Chicago office) dry cask inspector Ross Landsman refused to sign and approve the NRC’s resolution of Shirani’s concerns, concluding that this same kind of thinking led to NASA’s Space Shuttle disasters. He stated in September 2003, “Holtec, as far as I’m concerned, has a non-effective QA program, and U.S. Tool & Die has no QA program whatsoever.” Landsman added that NRC’s Nuclear Reactor Regulation division did a poor follow-up on the significant issues identified, and prematurely closed them.

3 Responses to Holtec

  1. Pingback: Holtec, Lockheed Martin, and the NJ Political Machine? | Mining Awareness Plus

  2. Pingback: On Dangers of USNRC Approval of Broken Nuclear Spent Fuel Rod Storage; Lack of Testing-Quality Assurance for Holtec Dry Cask Storage | Mining Awareness Plus

  3. Pingback: 04/26/2016 Sacramento DOE nuclear waste meeting: DOE ignores cracking risk in storage plan | San Onofre Safety

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s