TO: California Coastal Commissioners October 11, 2019

EORFC@coastal.ca.gov

FR: Donna Gilmore, SanOnofreSafety.org donnagilmore@gmail.com 949-204-7794

RE: Public Comment & request to delay October 2019 Agenda Item Thursday 12a - Application No. 9-19-0194 (Southern California Edison, San Diego Co.)

The Coastal Commission needs to evaluate the following new critical information (obtained from an NRC FOIA request) before making a decision on Southern California Edison's Application 9-9-0194 regarding decommissioning San Onofre. Please remove this item from the October 2019 agenda.

RECOMMENDATION: The Coastal Commission needs to require keeping the spent fuel pools for repackaging defective canisters until another on-site alternative to repackage the spent fuel is in place. These canisters will not be transportable if this is not done, based on the following new NRC evidence.

FINDING: NRC Senior Inspector states it is impossible to inspect or repair defective Holtec dry storage canisters.

A recent NRC FOIA request revealed an NRC/SCE correspondence where NRC Senior Inspector, Lee Brookhart, states that it is "impossible" to inspect or eliminate surface defects in the Holtec dry storage canisters according to ASME Section III NB-2538, "Elimination of Surface Defects". He also states "essentially, the proposed [SCE 72.48 design change] is adding an alternative to the code to not have to do inspections and repair these new defects".

Reference: NRC FOIA ML19261A089 pages 180-186 NRC Review Question Response Form [see pdf page 2 on below link.

https://sanonofresafety.files.wordpress.com/2019/10/ml19261a089foia-p180-186asme-non-comphilite.pdf

FINDING: State Lands Commission FEIR assumption that need for spent fuel pools is speculative has been proven wrong and should not be relied upon by the Coastal Commission.

The above new NRC evidence shows the SLC assumption that "The need to retain the spent fuel pools is based on speculation that they will be needed in the future because dry storage casks will be damaged and unsuitable for transport."

FINDING: SCE states their recent "Visual Assessment" it is NOT an inspection. However, it did find precursors to corrosion and cracking.

The visual assessment identified a few precursors to cracking such as wear marks and carbon steel contamination, which can lead to galvanic corrosion and cracking. It could not find cracks or depth of cracks or gouges, according to ASME requirements as stated above.

SCE states on their visual assessment report "NOTE: This is NOT a formal "inspection" or an activity qualified to ASME Sections III, V, XI or otherwise. "

Reference: NRC FOIA ML19261A089 page 124-140 SONGS HI-STORM MPC Visual Assessment Report https://sanonofresafety.files.wordpress.com/2019/10/ml19261a089foia-p124-140visualassesshilite.pdf

FINDING: The only NRC and DOE approved methods to repackage spent fuel is in spent fuel pools or a dry fuel handling (hot cell) facility. Containers and fuel may not be transportable, if not repackaged.

NRC Regulation 10 CFR § 71.85 Packaging and Transportation of Radioactive Materials. Preliminary determinations. Before the first use of any packaging for the shipment of licensed material — (a) The certificate holder shall ascertain that there are no cracks, pinholes, uncontrolled voids, or other defects that could significantly reduce the effectiveness of the packaging.

http://www.nrc.gov/reading-rm/doc-collections/cfr/part071/full-text.html#part071-0085

RECOMMENDATION: The Coastal Commission should not grant a permit to destroy the pools. There is no reason to rush approval of this application. Destroying the pools will strand the waste at San Onofre and not meet Coastal Commission special conditions for the dry storage system for storage or transport.

Attached are relevant pages from the documents discussed above. These are also available at https://sanonofresafety.org/holtec-hi-storm-umax-nuclear-waste-dry-storage-system/

NRC Senior Inspector Lee Brookhart statements

NRC Review Question Response Form

Note 1: Complete a separate form for each inspector question.

Note 2: The item tracking number will be generated when the record is entered into the inspection database.

Question Title: Clarification of ASME Section 3 in Licensing Basis

Tracking Number: 11A AR Number: 0319-53473-3 Date Initiated: 03/21/2019

Holtec Support Required: Yes__ or No ___

Question description:

Appendix B Technical Specification 3.3 requires, that the AMSE BPVC, 2007, is the governing Code for the MPC. Additionally, Appendix B Table 3-1 tie the canister and FSAR to the requirements of ASME Section III in many areas.

The original FSAR statement for no scratches mirrored the CoC/TS design basis that no scratches would ensure the code adherence to ASME Section III.

Now under 72.48, a design change is needed to deviate to allow scratches. But instead of using ASME BPVC code criteria to inspect the canister and properly disposition the defects which would maintain conformance to the code, the calculation utilizes Archard's wear equation to bound the condition. I just don't see how that meets CoC.

Now I understand, how SCE has argued, it is not a methodology. I think it is more of CoC and Appendix B change, myself. Essentially, the change is adding an alternative to the code to not have to do inspections and repair these new defects. Alternatives to the code can only be done via license amendment. Or maybe per TS Appendix B 3.3.2.

NB-4131 "Material originally accepted on delivery in which defects exceeding limits of NB-2500 are known or discovered during the process of fabrication or installation is unacceptable. The material may be used provided the condition is corrected in accordance with the requirements of NB-2500

ASME Section III NB-2538, "Elimination of Surface Defects" requires that defects are required to be examined by either magnetic particle or liquid penetrant method to ensure that the defect has been removed or reduced to an imperfection of acceptable size."

Instead of doing that (which I understand is impossible) which would maintain code compliance, the 72.48 deviates using a calculational method to bound the defect. The only "method" that should be used to disposition these defects is some method allowed or described in the BPVC code or the licensee would need an alternative to the code to maintain compliance with the regulatory licensing basis.

SONGS HI-STORM MPC Visual Assessment Report

INTRODUCTION

San Onofre Nuclear Generating Station (SONGS) performed a visual assessment of three multi-purpose canisters (MPCs) from March 21 - 23, 2019. This report includes the following:

- Scope of visual assessments
- Visual assessment techniques utilized
- · Visual assessment results
- Conclusion

SONGS QA program requirements were applied to visual assessment activities, see Appendix C.

VISUAL ASSESSMENT SCOPE

The scope of the visual assessment is the accessible surfaces of the MPC shell and baseplate. The three MPCs included in the visual assessment were selected for the following reasons: 1) MPC serial number (S/N) 067 which was involved in the August 3, 2018 event where it was suspended by the divider shell shield ring, 2) MPC S/N 064 which was documented as having made contact with the divider shell on July 22, 2018 during downloading operations, and 3) MPC S/N 072, an MPC loaded at an earlier portion of the fuel transfer campaign, is on a different row than the previous two MPCs. A different row was selected to account for the minimal drainage slope on the HOLTEC ISFSI pad and its potential effect on MPC vertical alignment during downloading operations.

VISUAL ASSESSMENT TECHNIQUES

A robotic crawler with cameras and a borescope with interchangeable tips (general area tip and measurement tip) were deployed in two stages to perform the visual assessment. During the first stage, the robotic crawler and borescope with the general area tip was used to provide general locations of surface irregularities. These surface irregularities were compared to post-fabrication photos and areas of interest were selected for characterization in the second stage. During the second stage, the robotic crawler and borescope with the measurement tip was used to characterize the surface irregularities (width and depth measurements as applicable).

The software used in conjunction with the borescope with measurement tip is able to detect a minimum width and depth of 0.001 inches (1 mil). See Appendix C for details regarding use of the borescopes and software.

Note: This is NOT a formal "inspection" or an activity qualified to ASME Sections III, V, XI or otherwise.

VISUAL ASSESSMENT RESULTS

The information below summarizes the results of the visual assessment.

The following surface irregularities were not found:

- Cracking
- Pitting

The following surface irregularities were found:

- Wear marks
- Water staining
- . Carbon steel contamination exhibited by iron oxide staining
- Fabrication artifacts