North Anna ISFSI

High Burnup Dry Storage Research Project TN-32 Storage Cask

Tom Brookmire

October 7, 2014

Agenda

- Background
- Fuel Selection Update & Baseline Data Activities
- License Amendment Approach (SNM-2507) & Considerations
 - Post Loading Considerations
- Gas Sampling
 - Licensing Considerations
 - Method
- Project Milestones
- Questions

North Anna ISFSI Research Project Background

- Storage of a TN-32 cask with high burnup fuel
 - North Anna ISFSI
 - Cask monitoring to provide valuable data for storage of high burnup fuel (>45,000 MWd/MtU)

North Anna ISFSI Research Project Background

- Data to be monitored
 - Fuel cladding temperature (indirect)
 - Cavity gas
 - Fission gases
 - Cavity pressure
 - Moisture
 - Hydrogen
 - Oxygen

North Anna ISFSI Research Project Projected Fuel Selection

- Eighteen Areva AMBW assemblies with M5™ cladding
- Twelve Westinghouse NAIF assemblies with Zirlo™ cladding
- One Westinghouse NAIF assembly with low-tin Zircaloy-4 cladding
- One Westinghouse LOPAR assembly with Zircaloy-4 cladding

North Anna ISFSI Research Project Fuel Selection

- Initial enrichment ranges from 3.59 w/o to 4.55 w/o
- Average assembly burnup ranges from 50.0 GWd/MtU to 58.1 GWd/MtU
- As of July 1, 2017
 - Payload heat load is just under 37 kW
 - Decay times range from 4.81 years to 27.85 years
 - Assembly decay heat values range from 725 Watts to 1511 Watts
 - Average assembly decay heat is 1155 Watts
- Peak cladding best estimate temperatures during drying expected to be approximately 340 °C

North Anna ISFSI Research Project Preliminary Loading Plan

	1	2 (TC Lance)	3	4	
	Zirlo	M5	Zirlo	Zirlo	
	54.2 GWd/MtU	53.4 GWd/MtU	54.3 GWd/MtU	51.9 GWd/MtU	
	4.25%, 3cy, 11yr	4.55%, 3cy, 8yr	4.25%, 3cy, 11yr	4.25%, 3cy, 13yr	
	1013 W	1167 W	1015 W	909 W	
5	6 (TC Lance)	7	8	9	10
Zirlo	M5	M5	M5	M5	Zirlo
52.1 GWd/MtU	52.0 GWd/MtU	51.2 GWd/MtU	50.5 GWd/MtU	53.3 GWd/MtU	55.5 GWd/MtU
4.25%, 3cy, 13yr	4.55%, 3cy, 6yr	4.55%, 3cy, 5 yr	4.55%, 3cy, 5 yr	4.55%, 3cy, 8yr	4.2%, 3cy, 17yr
914 W	1276 W	1503 W	1477 W	1163 W	906 W
11	12	13	14 (TC Lance)	15	16
Zirlo	M5	Zirc-4	M5	M5	M5
54.6 GWd/MtU	51.0 GWd/MtU	58.1 GWd/MtU	52.2 GWd/MtU	50.6 GWd/MtU	51.8 GWd/MtU
4.2%, 3cy, 17yr	4.55%, 3cy, 5 yr	3.59%, 4cy, 28yr	4.55%, 3cy, 6yr	4.55%, 3cy, 5 yr	4.55%, 3cy, 8 yr
885 W	1496 W	858 W	1281 W	1482 W	1120 W
17	18	19 (TC Lance)	20	21	22
M5	M5	Zirlo	Low-Sn Zirc-4	M5	M5
53.3 GWd/MtU	50.9 GWd/MtU	53.1 GWd/MtU	50 GWd/MtU	51.0 GWd/MtU	51.9 GWd/MtU
4.55%, 3cy, 8yr	4.55%, 3cy, 5 yr	4.45%, 3cy, 10yr	4.0%, 2cy, 22yr	4.55%, 3cy, 5 yr	4.55%, 3cy, 8 yr
1165 W	1492 W	1037 W	725 W	1496 W	1121 W
23	24 (TC Lance)	25	26	27	28 (TC Lance)
Zirlo	Zirlo	M5	M5	M5	Zirlo
55.1 GWd/MtU	52.9 GWd/MtU	51.0 GWd/MtU	51.3 GWd/MtU	53.5 GWd/MtU	53.0 GWd/MtU
4.25%, 3cy, 11yr	4.45%, 3cy, 10yr	4.55%, 3cy, 5 yr	4.55%, 3cy, 5 yr	4.4%, 3cy, 8yrs	4.45%, 3cy, 10yr
1036 W	1031 W	1495 W	1511 W	1178 W	1035 W
	29	30	31 (TC Lance)	32	
	M5	M5	Zirlo	Zirlo	
	51.2 GWd/MtU	53.0 GWd/MtU	54.9 GWd/MtU	52.3 GWd/MtU	
	4.40%, 3cy, 8yr	4.55%, 3cy, 8yr	4.25%, 3cy, 11yr	4.25%, 3cy, 13yr	
	1073 W	1155 W	1031 W	918 W	

North Anna ISFSI Research Project Baseline Fuel Data (Sister Assemblies)

- Six planned donor assemblies providing approximately 22 fuel rods for evaluation
- The six planned donor assemblies have a complement of 20 assemblies planned for storage that are designated as sister assemblies
- Three of the 20 sister assemblies planned for loading will also be donor assemblies
 - That is, the only sisters available for three of the sister assemblies are also planned for loading

North Anna ISFSI Research Project Upcoming Site Work

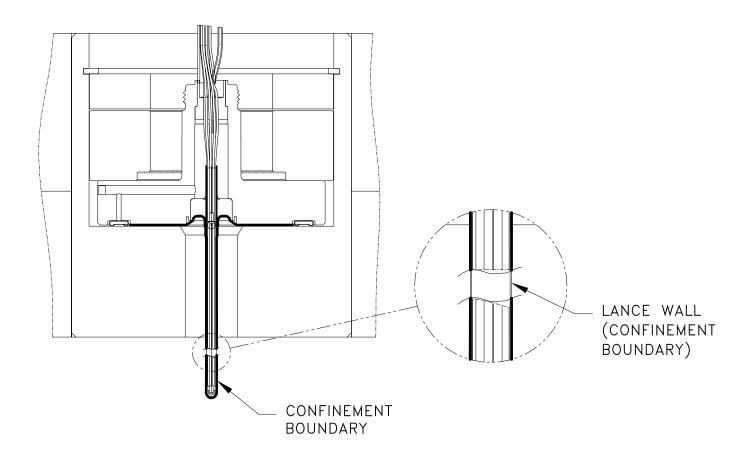
- Sister Rod Work
 - Shipping basket arrives on-site
 - December 2014
 - Areva sister rod extraction
 - January 2015
 - Westinghouse sister rod extraction
 - June 2015
 - Sister rod cask shipment
 - **1Q16**

North Anna ISFSI Research Project Licensing Approach

- TN-32 cask fabricated to CoC 72-1021 requirements
 - TN-32B-81 cask fabricated and certificate of conformance issued by Areva TN
 - Not initially licensed for high burnup fuel
- Proposed license amendment to SNM-2507
 - North Anna's site specific ISFSI license for TN-32 storage casks

North Anna ISFSI Research Project Design Basis

- A Design and Licensing Basis Document (DLBD) will be submitted with the License Amendment Request (LAR) (proprietary submittal)
- The DLBD will provide the analytical bases and conclusions for departures from the existing approved analyses in the TN-32 FSAR
 - For example:
 - Criticality safety analysis, higher enrichment
 - Thermal safety analysis, higher heat loading
 - Shielding analysis, higher source term



North Anna ISFSI Research Project Design Basis

- Other materials included in the design
 - Thermocouple (TC) lances
 - Thermocouple/fuel assembly interface guides
 - Neutron absorber rods for future transport
 - Similar to absorber assemblies used during operation

North Anna ISFSI Research Project TC Lance Conceptual Confinement

North Anna ISFSI Research Project Licensing Considerations

- Other LAR features
 - Possible evaluations of non-conforming conditions as a result of fabrication
 - Previously evaluated via 72.48 for the CoC
 - Separate Technical Specifications
 - Will address modifications associated with the high burnup cask
 - These will be in addition to current Tech Specs for existing TN-32 casks on the pad

North Anna ISFSI Research Project Licensing Considerations – Post Loading

- Thermal soak period
 - Not currently in SNM-2507
 - Thermal equilibrium expected within three weeks after helium backfill
 - Cask will remain in cask prep bay with cask cavity pressure monitoring in place
 - Data logger will record thermal performance data for entire thermal soak period
- Final leak testing performed after thermal soak period

North Anna ISFSI Research Project Licensing Considerations – Post Transfer to Pad

- Tech Spec monitoring equipment (OP system pressure switches) will be installed at pad
 - Identical to existing North Anna TN-32 casks
 - OP system will "see" the TC lances
 - Identical periodic test frequency for Tech Spec monitoring equipment as existing North Anna TN-32 casks

North Anna ISFSI Research Project Cavity Gas Sampling – Licensing

- In situ cavity gas sampling
 - May need exemption from confinement regulation 72.128(a)(3)
 - Will establish controls and radiological monitoring
- In situ cavity gas sampling is not currently described in SNM-2507
 - Will re-establish confinement boundary seal, but cannot meet the same acceptance criterion as initially performed.
 - Seal integrity will rely upon pressure monitoring system Tech
 Specs

North Anna ISFSI Research Project Cavity Gas Sampling – Method

Method

- Remove vent port cover, fill gas samples, analyze at site lab
- Vent port cover will be reseated using same seal design as the original (i.e., bolts, lubricant, torque technique, and o-ring will be same design)

Planned frequency

- Once before 2020 (target 1 year after loading)
- Once ~ 3 years after first sample
- Once prior to transport

Basis

- Aligns with station resource requirements
- Associated dose aligned with ALARA principle
- Supports license renewal timing needs

North Anna ISFSI Research Project Milestone Schedule

1/31/15: Areva TN completes DLBD

 7/31/15: Dominion submits LAR & Exemption Request to NRC

■ 1Q16: Sister rods shipped to laboratory

■ 1/31/17: Target for NRC review completion

■ 6/30/17: Dry run and functional tests complete

7/31/17: Cask loading complete – begin thermal soak period

8/21/17: Cask emplaced at ISFSI pad

Questions

?